Do high temperatures enhance the negative effects of ultraviolet-B radiation in embryonic and larval amphibians?

نویسندگان

  • Lesley A. Alton
  • Craig E. Franklin
چکیده

For the embryos and tadpoles of amphibian species, exposure to ultraviolet-B radiation (UVBR) can be lethal, or cause a variety of sublethal effects. Low temperatures enhance the detrimental effects of UVBR and this is most likely because the enzyme-mediated processes involved in the repair of UVBR-induced damage function less effectively at low temperatures. Whether these repair processes are also impaired, and thus the negative effects of UVBR similarly enhanced, at high temperatures is not known, but is an ecologically relevant question to ask given that organisms that inhabit environments where the temperature fluctuates widely on a daily timescale are likely to experience high doses of UVBR when temperatures are high. Here we examined the thermal-dependence of UVBR effects in the context of an ecologically-relevant fluctuating UVBR and temperature regime to test the hypothesis that exposure to peak UVBR levels while the temperature is high (35°C) is more detrimental to embryonic and larval Limnodynastes peronii than exposure to peak UVBR levels while the temperature is moderate (25°C). Embryos exposed to peak UVBR levels at 35°C hatched 10 h later than those exposed to peak UVBR levels at 25°C and, as tadpoles, were smaller and consequently swam more slowly but, in an environment with predators, exhibited no difference in survival time. There was also no effect of experimental treatment on the hatching success of embryos, nor on the post-hatch survival of tadpoles. These findings, therefore, are not sufficiently strong to support our hypothesis that high temperatures enhance the negative effects of UVBR in embryonic and larval amphibians.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation

Habitat use by animals often reflects the balance between conflicting demands such as foraging and avoiding predation. Environmental stressors such as temperature can also affect habitat use in many organisms, particularly in ectothermic animals. For example, warm, shallow thermal regimes in ponds can optimize growth and developmental rate of amphibian larvae but may also expose larvae to poten...

متن کامل

Response of conifers to UV-B and climate in mountain areas

The present study was focused to examine the combined effects of climate and ultraviolet-B radiation on conifer tree-ring density. Statistical methods were employed to extract tree responses in annual ring density and to identify functional relationship in trees when the level of ultraviolet-B radiation changes regardless of climate variations. In this study, the consideration was given to the ...

متن کامل

Effects of Salinity on Embryonic and Early Larval Development of a Tropical Sea Urchin, Salmacis sphaeroides

Effects of salinity on fertilization, embryonic stage, and early larval development and growth performances of short-spined white sea urchin, Salmacis sphaeroides were conducted under a controlled laboratory condition. The experiment was carried out with seven salinity treatments (15, 20, 25, 30, 35, 40 and 45 PSU), each of which was triplicated. Significantly highest fertilization success was ...

متن کامل

Influence of ambient ultraviolet radiation on Bufo calamita egg development in a semiarid zone (Catalonia, Spain).

Several experiments have shown that ambient ultraviolet-B radiation (UV-B) has negative effects on the development of amphibians' embryos. We studied the effects of UV-B radiation on development, survival and frequency of deformity during egg development in the Natterjack toad (Bufo calamita) from a semiarid region of Lleida (Catalonia, Spain). Eggs exposed to ambient levels of UV-B and those p...

متن کامل

Effects of Salinity on Embryonic and Early Larval Development of a Tropical Sea Urchin, Salmacis sphaeroides

Effects of salinity on fertilization, embryonic stage, and early larval development and growth performances of short-spined white sea urchin, Salmacis sphaeroides were conducted under a controlled laboratory condition. The experiment was carried out with seven salinity treatments (15, 20, 25, 30, 35, 40 and 45 PSU), each of which was triplicated. Significantly highest fertilization success was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012